Fraud Detection: A Study of AdaBoost Classifier and K-Means Clustering
نویسندگان
چکیده
منابع مشابه
ahp algorithm and un-supervised clustering in auto insurance fraud detection
this thesis is a study on insurance fraud in iran automobile insurance industry and explores the usage of expert linkage between un-supervised clustering and analytical hierarchy process(ahp), and renders the findings from applying these algorithms for automobile insurance claim fraud detection. the expert linkage determination objective function plan provides us with a way to determine whi...
15 صفحه اولBrain Tumour Detection Using Neural Network Classifier and K-Means Clustering Algorithm for Classification and Segmentation
The aim of this work is to present an automated method that assists diagnosis of normal and abnormal MR images. The diagnosis method consists of four stages, pre-processing of MR images, skull Striping, feature extraction, feature reduction and classification. After histogram equalization of image, the features are extracted based on Dual-Tree Complex wavelet transformation (DTCWT). Then the fe...
متن کاملTraffic Anomaly Detection Using K-Means Clustering
Data mining techniques make it possible to search large amounts of data for characteristic rules and patterns. If applied to network monitoring data recorded on a host or in a network, they can be used to detect intrusions, attacks and/or anomalies. This paper gives an introduction to Network Data Mining, i.e. the application of data mining methods to packet and flow data captured in a network,...
متن کاملthe clustering and classification data mining techniques in insurance fraud detection:the case of iranian car insurance
با توجه به گسترش روز افزون تقلب در حوزه بیمه به خصوص در بخش بیمه اتومبیل و تبعات منفی آن برای شرکت های بیمه، به کارگیری روش های مناسب و کارآمد به منظور شناسایی و کشف تقلب در این حوزه امری ضروری است. درک الگوی موجود در داده های مربوط به مطالبات گزارش شده گذشته می تواند در کشف واقعی یا غیرواقعی بودن ادعای خسارت، مفید باشد. یکی از متداول ترین و پرکاربردترین راه های کشف الگوی داده ها استفاده از ر...
k-means-: A Unified Approach to Clustering and Outlier Detection
We present a unified approach for simultaneously clustering and discovering outliers in data. Our approach is formalized as a generalization of the k-means problem. We prove that the problem is NP-hard and then present a practical polynomial time algorithm, which is guaranteed to converge to a local optimum. Furthermore we extend our approach to all distance measures that can be expressed in th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Social Science Research Network
سال: 2021
ISSN: ['1556-5068']
DOI: https://doi.org/10.2139/ssrn.3789879